Fast fitting of neural ordinary differential equations by Bayesian neural gradient matching to infer ecological interactions from time‐series data

Author:

Bonnaffé Willem12ORCID,Coulson Tim2

Affiliation:

1. Big Data Institute University of Oxford Oxford UK

2. Department of Biology University of Oxford, Zoology Research and Administration Building Oxford UK

Abstract

Abstract Inferring ecological interactions is hard because we often lack suitable parametric representations to portray them. Neural ordinary differential equations (NODEs) provide a way of estimating interactions non‐parametrically from time‐series data. NODEs, however, are slow to fit, and inferred interactions usually are not compared with the ground truth. We provide a fast NODE fitting method, Bayesian neural gradient matching (BNGM), which relies on interpolating time series with neural networks and fitting NODEs to the interpolated dynamics with Bayesian regularisation. We test the accuracy of the approach by inferring ecological interactions in time series generated by an ODE model with known interactions. We compare these results against three existing approaches for estimating ecological interactions, standard NODEs, ODE models and convergent cross‐mapping (CCM). We also infer interactions in experimentally replicated time series of a microcosm featuring an algae, flagellate and rotifer population, in the hare and lynx system, and the Maizuru Bay community featuring 11 species. Our BNGM approach allows us to reduce the fitting time of NODE systems to only a few seconds and provides accurate estimates of ecological interactions in the artificial system, as true ecological interactions are recovered with minimal error. Our benchmark analysis reveals that our approach is both faster and more accurate than standard NODEs and parametric ODEs, while CCM was found to be faster but less accurate. The analysis of the replicated time series reveals that only the strongest interactions are consistent across replicates, while the analysis of the Maizuru community shows the strong negative impact of the chameleon goby on most species of the community, and a potential indirect negative effect of temperature by favouring goby population growth. Overall, NODEs alleviate the need for a mechanistic understanding of interactions, and BNGM alleviates the heavy computational cost. This is a crucial step availing quick NODE fitting to larger systems, cross‐validation and uncertainty quantification, as well as more objective estimation of interactions, and complex context dependence, than parametric models.

Publisher

Wiley

Subject

Ecological Modeling,Ecology, Evolution, Behavior and Systematics

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3