When can we trust our model predictions? Unearthing structural sensitivity in biological systems

Author:

Adamson M. W.1,Morozov A. Yu.12

Affiliation:

1. Department of Mathematics, University of Leicester, Leicester LE1 7RH, UK

2. Shirshov Institute of Oceanology, Moscow, Russia

Abstract

It is well recognized that models in the life sciences can be sensitive to small variations in their model functions, a phenomenon known as ‘structural sensitivity’. Conventionally, modellers test for sensitivity by varying parameters for a specific formulation of the model functions, but models can show structural sensitivity to the choice of functional representations used: a particularly concerning problem when system processes are too complex, or insufficiently understood, to theoretically justify specific parameterizations. Here we propose a rigorous test for the detection of structural sensitivity in a system with respect to the local stability of equilibria, the main idea being to project infinite dimensional function space onto a finite dimensional space by considering the local properties of the model functions. As an illustrative example, we use our test to demonstrate structural sensitivity in the seminal Rosenzweig–MacArthur predator–prey model, and show that the conventional parameter-based approach can fail to do so. We also consider some implications that structural sensitivity has for ecological modelling: we argue that when the model exhibits structural sensitivity but experimental results remain consistent it may indicate that there is a problem with the model construction, and that in some cases trying to find an ‘optimal’ parameterization of a model function may simply be impossible when the model exhibits structural sensitivity. Finally, we suggest that the phenomenon of structural sensitivity in biological models may help explain the irregular oscillations often observed in real ecosystems.

Publisher

The Royal Society

Subject

General Physics and Astronomy,General Engineering,General Mathematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3