Using neural ordinary differential equations to predict complex ecological dynamics from population density data

Author:

Arroyo-Esquivel Jorge1ORCID,Klausmeier Christopher A.12345ORCID,Litchman Elena1234

Affiliation:

1. Department of Global Ecology, Carnegie Institution for Science , Stanford, CA, USA

2. W. K. Kellogg Biological Station, Michigan State University , Hickory Corners, MI, USA

3. Program in Ecology and Evolutionary Biology, Michigan State University , East Lansing, MI, USA

4. Department of Integrative Biology, Michigan State University , East Lansing, MI, USA

5. Department of Plant Biology, Michigan State University , East Lansing, MI, USA

Abstract

Simple models have been used to describe ecological processes for over a century. However, the complexity of ecological systems makes simple models subject to modelling bias due to simplifying assumptions or unaccounted factors, limiting their predictive power. Neural ordinary differential equations (NODEs) have surged as a machine-learning algorithm that preserves the dynamic nature of the data (Chen et al. 2018 Adv. Neural Inf. Process. Syst. ). Although preserving the dynamics in the data is an advantage, the question of how NODEs perform as a forecasting tool of ecological communities is unanswered. Here, we explore this question using simulated time series of competing species in a time-varying environment. We find that NODEs provide more precise forecasts than autoregressive integrated moving average (ARIMA) models. We also find that untuned NODEs have a similar forecasting accuracy to untuned long-short term memory neural networks and both are outperformed in accuracy and precision by empirical dynamical modelling . However, we also find NODEs generally outperform all other methods when evaluating with the interval score, which evaluates precision and accuracy in terms of prediction intervals rather than pointwise accuracy. We also discuss ways to improve the forecasting performance of NODEs. The power of a forecasting tool such as NODEs is that it can provide insights into population dynamics and should thus broaden the approaches to studying time series of ecological communities.

Publisher

The Royal Society

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3