Drivers of plant community (in)stability along a sea–inland gradient

Author:

La Bella Greta1ORCID,Carboni Marta1ORCID,Sperandii Marta Gaia23ORCID,de Bello Francesco3ORCID,Stanisci Angela4ORCID,Acosta Alicia T. R.1ORCID

Affiliation:

1. Department of Science Roma Tre University Rome Italy

2. Department of Botany and Zoology Masaryk University Brno Czech Republic

3. Centro de Investigaciones Sobre Desertificación (CSIC‐UV‐GV) Valencia Spain

4. EnvixLab, Department of Biosciences and Territory University of Molise Termoli Italy

Abstract

Abstract Global change pressures are highlighting the need to better understand the mechanisms driving the temporal stability of natural communities under different environmental conditions. There is ample evidence that species richness helps communities to withstand environmental fluctuations and stabilise over time. However, it is still debated whether richness promotes stability through the diversity of species functional traits, phylogenetic lineages and ecological strategies in the community or because of the likelihood of including stable species. Furthermore, it is unclear whether the positive effect of diversity on stability is maintained in conditions of strong environmental fluctuations (e.g. frequent disturbances and stress). To address these questions, we analysed long‐term monitoring data of 84 permanent plots in coastal dune plant communities distributed along a gradient of natural stress and disturbance, with communities closer to the sea subject to greater stress and more frequent disturbances. Specifically, we used structural equation models to disentangle the relative influence of the environmental gradient and the different diversity components (species richness, functional and phylogenetic diversity; SR, FD and PD), as well as of the dominant ecological strategy (captured by species lifespan) on community stability, through their effect on two key stability mechanisms (population stability and species asynchrony). We found that the sea–inland environmental gradient was the main driver of stability mechanisms. Stress and disturbance decreased both population stability and species asynchrony, but also reduced species richness, which thus exerted a stabilising effect only on the communities in more favourable environmental conditions. Surprisingly, we did not find an effect of FD and PD on community stability, neither directly nor via asynchrony. However, the dominance of perennial species mitigated the instability generated by stress and disturbance. Perennial species were on average more stable than annuals and displayed a wider range of species fluctuations, including compensatory dynamics among species (i.e. asynchrony). Synthesis: Overall, our results highlight the importance of accounting for the environmental context when examining mechanisms of community stability. Species richness remains a useful direct predictor of community stability. Species ecological strategies, like the acquisitive–conservative trade‐off connected to lifespan, however, should also be routinely considered as drivers of both population stability and compensatory dynamics.

Publisher

Wiley

Subject

Plant Science,Ecology,Ecology, Evolution, Behavior and Systematics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3