Higher plant colonisation and lower resident diversity in grasslands more recently abandoned from agriculture

Author:

Catford Jane A.123ORCID,Shepherd Harry E. R.1ORCID,Tennant Phillip2,Tilman David45ORCID

Affiliation:

1. Department of Geography King's College London London UK

2. Fenner School of Environment and Society The Australian National University Canberra Australian Capital Territory Australia

3. School of Ecosystem & Forest Sciences University of Melbourne Parkville Victoria Australia

4. Department of Ecology, Evolution and Behavior University of Minnesota Saint Paul Minnesota USA

5. Bren School of the Environment University of California Santa Barbara California USA

Abstract

Abstract Rates of species colonisation and extirpation are increasing in plant communities world‐wide. Colonisation could potentially help compensate for, or compound, resident diversity loss that results from global environmental change. We use a multifactorial seed addition grassland experiment to examine relationships between plant colonisation, resident species diversity and key community assembly factors over 3 years. By manipulating colonist seed rate, imposing disturbance and examining abundance and diversity impacts of 14 formerly absent sown colonists in communities that varied in successional stage and time since agricultural abandonment, we were able to disentangle effects of global change factors (species introduction, novel disturbance and land use change) that are usually confounded. Evidence suggested that cover abundance of sown colonists was most strongly influenced by successional stage of recipient communities, though number of growing seasons was also important for the group of seven colonists with resource conservative ‘slow’ life history traits. Colonist type, seed rate and disturbance had weaker relationships with colonist cover. Factors affecting sown colonist cover were highly conditional. A negative relationship between plot‐level disturbance and colonist cover in early successional communities meant that, despite a positive relationship in late succession, colonisation was negatively related to disturbance overall, defying theoretical expectations. Non‐sown resident diversity was negatively related to colonist cover and positively related to successional stage. Resource acquisitive colonists with ‘fast’ life history traits appeared to limit cover of ‘slow colonists’ when the two groups were sown together, likely reflecting niche pre‐emption. Communities at earlier stages of succession had lower resident diversity and experienced higher levels of colonisation than communities at later stages of succession. Elevated colonisation and lower resident diversity both appeared to be symptoms of human‐induced land use change. However, results suggested that resource competition from plant colonists may also limit resident diversity in grasslands abandoned from agriculture more recently. Synthesis. Our findings point to the importance of resource availability and competition on plant colonisation and colonist impacts on residents. Although colonisation is potentially a source of biodiversity in the short term, our results suggest that plant colonists that reach high abundance may be a further threat to resident plant diversity in secondary grasslands recovering from a recent history of agriculture.

Funder

Australian Research Council

H2020 European Research Council

Publisher

Wiley

Subject

Plant Science,Ecology,Ecology, Evolution, Behavior and Systematics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3