The trait‐mediated trade‐off between growth and survival depends on tree sizes and environmental conditions

Author:

Iida Yoshiko1ORCID,Niiyama Kaoru1ORCID,Aiba Shin‐ichiro2ORCID,Kurokawa Hiroko1ORCID,Kondo Shuntaro3,Mukai Mana4ORCID,Mori Akira S.5ORCID,Saito Satoshi1ORCID,Sun Yi6ORCID,Umeki Kiyoshi7ORCID

Affiliation:

1. Forestry and Forest Products Research Institute Tsukuba Japan

2. Faculty of Environmental Earth Science Hokkaido University Sapporo Japan

3. Graduate School of Environment and Information Science Yokohama National University Yokohama Japan

4. Faculty of Life and Environmental Sciences University of Yamanashi Kofu Japan

5. Research Center for Advanced Science and Technology The University of Tokyo Tokyo Japan

6. Institute of Ecology and Evolutionary Biology National Taiwan University Taipei City Taiwan

7. Graduate School of Horticulture Chiba University Matsudo City Japan

Abstract

Abstract Interspecific relationships between growth and survival are critical determinants of tree species diversity maintenance in forests. The trade‐offs between growth and survival in co‐occurring tree species are believed to arise along a continuum of life‐history strategies. For example, co‐occurring species range from those that grow slowly and survive well in resource‐poor environments to those that grow quickly but have low survival rates in resource‐rich environments. However, uncertainties remain regarding how growth–survival trade‐offs are related to species traits, tree sizes or environmental conditions. We examined how the relationships between species traits and growth–survival relationships shift in response to changes in stem sizes and across census periods with different climate conditions (frequency of strong winds, drought intensity) across 45 co‐occurring tree species based on 23 years of growth and survival records in a warm temperate rainforest on Yakushima Island, Japan. We developed hierarchical Bayesian models of relative growth and survival rates, including leaf traits, wood density and 95‐percentile maximum stem diameter as explanatory variables. We tested the relationships between estimated trait‐mediated growth–survival relationships and the indices of climate events during five census periods. Each trait's effects on growth–survival relationships differed across the five census periods in response to climate conditions. Interspecific growth–survival relationships affected by a single trait axis for leaves or wood tended to be negative. In contrast, those affected by the maximum stem diameter tended to be positive. Such trends increased with more frequent strong winds or more intense droughts. The single‐trait effects on growth–survival relationships were stronger for smaller sizes than for larger sizes. For all traits combined, we found a significant growth–survival trade‐off only for small‐sized stems in three of five census periods. Synthesis. Our results indicate that the effect of species traits on the growth–survival relationships depended on tree sizes, the census periods or both in response to the frequency or intensity of climate events. We argue the importance of incorporating spatial and temporal variations in environmental conditions into long‐term data from tree census to predict forest dynamics.

Funder

Environmental Restoration and Conservation Agency

Publisher

Wiley

Subject

Plant Science,Ecology,Ecology, Evolution, Behavior and Systematics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3