3D‐reconstructions of zygospores in Zygnema vaginatum (Charophyta) reveal details of cell wall formation, suggesting adaptations to extreme habitats

Author:

Permann Charlotte1ORCID,Pichrtová Martina2ORCID,Šoljaková Tereza2,Herburger Klaus13ORCID,Jouneau Pierre‐Henri4ORCID,Uwizeye Clarisse5ORCID,Falconet Denis5ORCID,Marechal Eric5ORCID,Holzinger Andreas1ORCID

Affiliation:

1. Department of Botany University of Innsbruck Innsbruck Austria

2. Department of Botany, Faculty of Science Charles University Prague Czech Republic

3. Institute of Biological Sciences, University of Rostock Rostock Germany

4. Laboratoire Modélisation et Exploration des Matériaux IRIG, CEA, Univ. Grenoble Alpes Grenoble France

5. Laboratoire de Physiologie Cellulaire et Végétale CEA, CNRS, INRAE, Univ. Grenoble Alpes Grenoble France

Abstract

AbstractThe streptophyte green algal class Zygnematophyceae is the immediate sister lineage to land plants. Their special form of sexual reproduction via conjugation might have played a key role during terrestrialization. Thus, studying Zygnematophyceae and conjugation is crucial for understanding the conquest of land. Moreover, sexual reproduction features are important for species determination. We present a phylogenetic analysis of a field‐sampled Zygnema strain and analyze its conjugation process and zygospore morphology, both at the micro‐ and nanoscale, including 3D‐reconstructions of the zygospore architecture. Vegetative filament size (26.18 ± 1.07 μm) and reproductive features allowed morphological determination of Zygnema vaginatum, which was combined with molecular analyses based on rbcL sequencing. Transmission electron microscopy (TEM) depicted a thin cell wall in young zygospores, while mature cells exhibited a tripartite wall, including a massive and sculptured mesospore. During development, cytological reorganizations were visualized by focused ion beam scanning electron microscopy (FIB‐SEM). Pyrenoids were reorganized, and the gyroid cubic central thylakoid membranes, as well as the surrounding starch granules, degraded (starch granule volume: 3.58 ± 2.35 μm3 in young cells; 0.68 ± 0.74 μm3 at an intermediate stage of zygospore maturation). Additionally, lipid droplets (LDs) changed drastically in shape and abundance during zygospore maturation (LD/cell volume: 11.77% in young cells; 8.79% in intermediate cells, 19.45% in old cells). In summary, we provide the first TEM images and 3D‐reconstructions of Zygnema zygospores, giving insights into the physiological processes involved in their maturation. These observations help to understand mechanisms that facilitated the transition from water to land in Zygnematophyceae.

Funder

Agence Nationale de la Recherche

Austrian Science Fund

Deutsche Forschungsgemeinschaft

Grantová Agentura, Univerzita Karlova

Publisher

Wiley

Subject

Cell Biology,Plant Science,Genetics,General Medicine,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3