Striking differences in frost hardiness and inability to cold acclimate in two Mougeotia species (Zygnematophyceae) from alpine and lowland habitats

Author:

Permann Charlotte1ORCID,Stegner Matthias1ORCID,Roach Thomas1ORCID,Loacker Valentina1,Lewis Louise A.2ORCID,Neuner Gilbert1ORCID,Holzinger Andreas1ORCID

Affiliation:

1. Department of Botany University of Innsbruck Innsbruck Austria

2. Department of Ecology and Evolutionary Biology University of Connecticut Storrs CT USA

Abstract

AbstractZygnematophyceae, a class of freshwater green algae, exhibit distinctive seasonal dynamics. The increasing frequency of cold snaps during the growing season might challenge the persistence of some populations. The present study explored the frost hardiness of two Mougeotia species isolated from different elevations and habitats. Additionally, a phylogenetic (rbcL sequence), ultrastructural and physiological characterization was performed. Both species, grown under standard culture conditions and cold acclimated cultures (+4°C), were exposed to freezing temperatures down to −9°C. Furthermore, ultrastructural‐, hydrogen peroxide (H2O2)‐ and photosynthetic pigment analysis were performed on cells exposed to −2°C, with and without induced ice nucleation. The alpine M. disjuncta showed a higher frost hardiness (LT50 = −5.8°C), whereas the lowland M. scalaris was susceptible to ice. However, frost hardiness did not improve after cold acclimation in either species but rather decreased significantly in M. disjuncta (LT50 = −4.7°C). Despite darkness, prolonged sub‐zero temperatures or freezing induced the activation of the xanthophyll (VAZ) cycle in M. scalaris. Our results demonstrate that frost hardiness varies within the genus Mougeotia and that the VAZ cycle can be activated in the dark under subzero temperature‐ and freezing stress but does not necessarily increase frost hardiness. As highly frost hardy cell types are usually formed at the end of the growing season, the ability of young cells to survive ice formation in the upper subzero temperature range represents a crucial survival strategy in populations exposed to late spring frosts.

Funder

Austrian Science Fund

Universität Innsbruck

Publisher

Wiley

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3