Environmental control reduces white‐nose syndrome infection in hibernating bats

Author:

Sewall B. J.1ORCID,Turner G. G.2ORCID,Scafini M. R.2ORCID,Gagnon M. F.1ORCID,Johnson J. S.34ORCID,Keel M. K.5,Anis E.6,Lilley T. M.7ORCID,White J. P.8ORCID,Hauer C. L.1,Overton B. E.9

Affiliation:

1. Department of Biology Temple University Philadelphia PA USA

2. Pennsylvania Game Commission Harrisburg PA USA

3. Department of Biological Sciences Ohio University Athens OH USA

4. School of Information Technology University of Cincinnati Cincinnati OH USA

5. School of Veterinary Medicine University of California Davis CA USA

6. Department of Pathobiology University of Pennsylvania, School of Veterinary Medicine, New Bolton Center Kennett Square PA USA

7. Finnish Museum of Natural History University of Helsinki Helsinki Finland

8. Wisconsin Department of Natural Resources Madison WI USA

9. Department of Biology Commonwealth University of Pennsylvania Lock Haven PA USA

Abstract

AbstractInfectious diseases caused by invasive, environmentally persistent fungal pathogens have increasingly endangered global biodiversity, yet disease management remains a major conservation challenge. A prominent example is white‐nose syndrome (WNS), a disease caused by the invasive fungal pathogen Pseudogymnoascus destructans (Pd) that has devastated populations of multiple North American bat species, but for which few effective management tools exist. Here, we propose that strategies to delay environmental transmission of Pd during early winter could limit WNS disease effects across winter, benefitting bats. We used a small captive experiment and a multi‐year field trial on wild, free‐ranging bats to assess an environmental control strategy to manage Pd within its environmental reservoir in Pennsylvania, USA, where the pathogen has become endemic. The strategy centers on the application of Polyethylene Glycol 8000 (PEG) to roost substrates in summer, prior to bat hibernation, as a means to disrupt environmental transmission to bats in early winter. In the captive experiment, environmental transmission of Pd to immunologically naïve little brown myotis (Myotis lucifugus) occurred from roost substrates inoculated with Pd, but the application of PEG to these substrates effectively blocked this transmission. In the field trial, Pd load and infection extent both declined substantially in free‐ranging M. lucifugus after treatment relative to controls, with declines exceeding effects of inter‐site and inter‐annual variation. Pathogen prevalence and load also declined substantially after PEG treatment in big brown bats (Eptesicus fuscus). No negative effects of PEG treatment were observed in body condition or colony counts of bats or in the microbial community. Together, these results are consistent with effective environmental control of Pd and reduced WNS disease effects in bats within contaminated hibernacula. The results also highlight the potential of carefully designed environmental control strategies for managing environmentally persistent pathogens.

Funder

National Fish and Wildlife Foundation

U.S. Fish and Wildlife Service

U.S. Forest Service

Publisher

Wiley

Subject

Nature and Landscape Conservation,Ecology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3