Persist or Perish: Can Bats Threatened with Extinction Persist and Recover from White-nose Syndrome?

Author:

Cheng Tina L1,Bennett Alyssa B2,Teague O'Mara M1345ORCID,Auteri Giorgia G6,Frick Winifred F17

Affiliation:

1. Bat Conservation International , 500 N Capital of Texas Highway, Buildling 8-255, Austin, Texas 78746 , USA , Science

2. Vermont Fish and Wildlife Department , 111 West St., Essex Junction, VT 05452 , USA

3. Department of Biological Sciences, Southeastern Louisiana University ; 808 N Pine St Ext, Hammond LA 70402 , USA , Science

4. Smithsonian Tropical Research Institute , Gamboa   Panama

5. Department of Migration, Max Planck Institute of Animal Behavior ; Am Obstberg 1, 78315 Radolfzell , Germany

6. Missouri State University, Department of Biology , 901 S. National Ave., Springfield, MO 65897 , USA

7. University of California, Santa Cruz, Ecology and Evolutionary Biology , 130 McAllister Way, Santa Cruz, CA 95060 , USA

Abstract

Synopsis Emerging mycoses are an increasing concern in wildlife and human health. Given the historical rarity of fungal pathogens in warm-bodied vertebrates, there is a need to better understand how to manage mycoses and facilitate recovery in affected host populations. We explore challenges to host survival and mechanisms of host recovery in three bat species (Myotis lucifugus, Perimyotis subflavus, and M. septentrionalis) threatened with extinction by the mycosis, white-nose syndrome (WNS) as it continues to spread across North America. We present evidence from the literature that bats surviving WNS are exhibiting mechanisms of avoidance (by selecting microclimates within roosts) and tolerance (by increasing winter fat reserves), which may help avoid costs of immunopathology incurred by a maladaptive host resistance response. We discuss management actions for facilitating species recovery that take into consideration disease pressures (e.g., environmental reservoirs) and mechanisms underlying persistence, and suggest strategies that alleviate costs of immunopathology and target mechanisms of avoidance (protect or create refugia) and tolerance (increase body condition). We also propose strategies that target population and species-level recovery, including increasing reproductive success and reducing other stressors (e.g., wind turbine mortality). The rarity of fungal pathogens paired with the increasing frequency of emerging mycoses in warm-bodied vertebrate systems, including humans, requires a need to challenge common conventions about how diseases operate, how hosts respond, and how these systems could be managed to increase probability of recovery in host populations.

Publisher

Oxford University Press (OUP)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3