Affiliation:
1. School of Health Science and Engineering University of Shanghai for Science and Technology Shanghai China
2. Key Laboratory of Oceanic and Polar Fisheries, Ministry of Agriculture and Rural Affairs, PR China, East China Sea Fisheries Research Institute Chinese Academy of Fishery Sciences Shanghai China
Abstract
SummaryBoiling, centrifuging and various drying techniques (vacuum freeze‐drying (VFD), vacuum drying (VD), hot‐air drying (HAD) and microwave drying (MWD)) were assessed for their impact on bioactive compounds in Antarctic krill meal. A comparison between the raw and boiling groups revealed a significant degradation and isomerisation of astaxanthin, accompanied by a 1.25‐fold and 1.32‐fold increase in saturated (SFAs) and monounsaturated fatty acids (MUFAs), respectively. Drying was the primary factor responsible for the reduction in phospholipids, α‐tocopherol and polyunsaturated fatty acid (PUFAs), in combination with the increase in thiobarbituric acid‐reactive substances. For different drying methods, it was found that HAD induced severe lipid oxidation. In contrast, the VFD, VD and MWD improved lipid quality, reducing thiobarbituric acid‐reactive substances (TBARS) by 13–22% and increasing phospholipids by 1.08–1.11 times compared to HAD. VD preserved higher levels of bioactive compounds. PLS‐DA analysis identified 13‐cis‐astaxanthin, α‐tocopherol and eleven fatty acids as key indicators for Antarctic krill meal.