Integrated transcriptome and metabolome analysis reveals antioxidant machinery in grapevine exposed to salt and alkali stress

Author:

Lu Xu1,Chen Guiping2,Ma Lei2,Zhang Congcong1,Yan Haokai1,Bao Jinyu1,Nai GuoJie1,Wang Wenhui3,Chen Baihong1ORCID,Ma Shaoying3,Li Sheng145ORCID

Affiliation:

1. College of Horticulture Gansu Agricultural University Lanzhou People's Republic of China

2. Agronomy College Gansu Agricultural University Lanzhou People's Republic of China

3. Basic Experimental Teaching Center Gansu Agricultural University Lanzhou People's Republic of China

4. College of Life Science and Technology Gansu Agricultural University Lanzhou People's Republic of China

5. Laboratory of Aridland Crop Science Gansu Agricultural University Lanzhou People's Republic of China

Abstract

AbstractPlant acclimation to salt and alkali stress is closely linked to the ability of the antioxidant system to mediate the scavenging of reactive oxygen species (ROS). In this study, we investigated the effects of salt stress and alkali stress on ROS, antioxidant enzymes, transcriptome, and metabolome. The results showed that the levels of superoxide anions, hydrogen peroxide, malondialdehyde, and electrolyte leakage increased under salt and alkali stress, with higher concentrations observed under alkali stress than salt stress. The activities of superoxide dismutase (EC 1.15.1.1), peroxidase (EC 1.11.1.7), catalase (EC 1.11.1.6), ascorbate peroxidase (EC 1.11.1.11), glutathione reductase (EC 1.6.4.2), dehydroascorbate reductase (EC 1.8.5.1), and monodehydroascorbate reductase (EC 1.6.5.4) varied under salt and alkali stress. The transcriptome analysis revealed the induction of signal transduction and metabolic processes and differential expression of genes encoding antioxidant enzymes in response to salt and alkali stress. The metabolome analysis demonstrated increased ascorbic acid and glutathione under salt stress, while most phenolic acids, flavonoids, and alkaloids increased under salt and alkali stress. Integrative analysis of the metabolome and transcriptome data revealed that the flavonoid biosynthesis pathway played a key role in the grapevine's response to salt stress. The total flavonoid content increased under salt and alkali stress, but the accumulation of flavonoids was higher under salt stress than alkali stress. In conclusion, our findings indicate significant differences in the antioxidant defense of grapevines under these two stresses, providing insight into distinct acclimation mechanisms in grapevine under salt and alkali stress.

Publisher

Wiley

Subject

Cell Biology,Plant Science,Genetics,General Medicine,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3