Unraveling Morphophysiological and Biochemical Responses of Triticum aestivum L. to Extreme pH: Coordinated Actions of Antioxidant Defense and Glyoxalase Systems

Author:

Bhuyan M.,Hasanuzzaman Mirza,Mahmud Jubayer,Hossain Md.,Bhuiyan Tasnim,Fujita Masayuki

Abstract

Soil pH, either low (acidity) or high (alkalinity), is one of the major constraints that affect many biochemical and biological processes within the cell. The present study was carried out to understand the oxidative damage and antioxidant defense in wheat (Triticum aestivum L. cv. BARI Gom-25) grown under different pH regimes. Eight-day-old seedlings were exposed to growing media with different pH levels (4.0, 5.5, 7.0, and 8.5). Seedlings grown in pH 4.0 and in pH 8.5 showed reductions in biomass, water, and chlorophyll contents; whereas plants grown at pH 7.0 (neutral) exhibited a better performance. Extremely acidic (pH 4.0) and/or strongly alkaline (pH 8.5)-stress also increased oxidative damage in wheat by excess reactive oxygen species (ROS) generation and methylglyoxal (MG) production, which increased lipid peroxidation and disrupted the redox state. In contrary, the lowest oxidative damage was observed at a neutral condition, followed by a strong acidic condition (pH 5.5), which was mainly attributed to the better performance of the antioxidant defense and glyoxalase systems. Interestingly, seedlings grown at pH 5.5 showed a significant increase in morphophysiological attributes compared with extreme acidic (pH 4.0)- and strong alkaline (pH 8.5)-stress treatments, which indicates the tolerance of wheat to the acidic condition.

Publisher

MDPI AG

Subject

Plant Science,Ecology,Ecology, Evolution, Behavior and Systematics

Reference59 articles.

1. Abiotic stress in plants and metabolic responses;Fraire-Velázquez,2013

2. Acidity and alkalinity of soils;Merry,2009

3. Examination and Description of Soil Profiles,2017

4. The Kitchen Garden Grower’s Guide: A Practical Vegetable and Herb Garden Encyclopedia;Albert,2008

5. Crop production on acidic soils: overcoming aluminium toxicity and phosphorus deficiency

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3