Arabidopsis cell suspension culture and RNA sequencing reveal regulatory networks underlying plant‐programmed cell death

Author:

Burke Rory1,McCabe Aideen1,Sonawane Neetu Ramesh1,Rathod Meet Hasmukh1,Whelan Conor V.1,McCabe Paul F.1,Kacprzyk Joanna1ORCID

Affiliation:

1. School of Biology and Environmental Science University College Dublin Dublin 4 Ireland

Abstract

SUMMARYProgrammed cell death (PCD) facilitates selective, genetically controlled elimination of redundant, damaged, or infected cells. In plants, PCD is often an essential component of normal development and can mediate responses to abiotic and biotic stress stimuli. However, studying the transcriptional regulation of PCD is hindered by difficulties in sampling small groups of dying cells that are often buried within the bulk of living plant tissue. We addressed this challenge by using RNA sequencing and Arabidopsis thaliana suspension cells, a model system that allows precise monitoring of PCD rates. The use of three PCD‐inducing treatments (salicylic acid, heat, and critical dilution), in combination with three cell death modulators (3‐methyladenine, lanthanum chloride, and conditioned medium), enabled isolation of candidate core‐ and stimuli‐specific PCD genes, inference of underlying regulatory networks and identification of putative transcriptional regulators of PCD in plants. This analysis underscored a disturbance of the cell cycle and mitochondrial retrograde signaling, and repression of pro‐survival stress responses, as key elements of the PCD‐associated transcriptional signature. Further, phenotyping of Arabidopsis T‐DNA insertion mutants in selected candidate genes validated the potential of generated resources to identify novel genes involved in plant PCD pathways and/or stress tolerance.

Publisher

Wiley

Subject

Cell Biology,Plant Science,Genetics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3