Patterns, timing, and environmental drivers of growth in two coexisting green‐stemmed Mediterranean alpine shrubs species

Author:

Albrecht Eike Corina1ORCID,Dobbert Svenja1ORCID,Pape Roland2ORCID,Löffler Jörg1ORCID

Affiliation:

1. Department of Geography University of Bonn Meckenheimer Allee 166 D‐53115 Bonn Germany

2. Department of Natural Sciences and Environmental Health University of South‐Eastern Norway Gullbringvegen 36 Bø N‐3800 Norway

Abstract

Summary The Mediterranean alpine is one of the most vulnerable ecosystems under future environmental change. Yet, patterns, timing and environmental controls of plant growth are poorly investigated. We aimed at an improved understanding of growth processes, as well as stem swelling and shrinking patterns, by examining two common coexisting green‐stemmed shrub species. Using dendrometers to measure daily stem diameter changes, we separated these changes into water‐related shrinking and swelling and irreversible growth. Implementing correlation analysis, linear mixed effects models, and partial least squares regression on time series of stem diameter changes, with corresponding soil temperature and moisture data as environmental predictors, we found species‐specific growth patterns related to different drought‐adaptive strategies. We show that the winter‐cold‐adapted species Cytisus galianoi uses a drought tolerance strategy combined with a high ecological plasticity, and is, thus, able to gain competitive advantages under future climate warming. In contrast, Genista versicolor is restricted to a narrower ecological niche using a winter‐cold escape and drought avoidance strategy, which might be of disadvantage in a changing climate. Pregrowth environmental conditions were more relevant than conditions during growth, controlling the species' resource availability. Thus, studies focusing on current driver constellations of growth may fail to predict a species’ ecological niche and its potential future performance.

Funder

Deutsche Forschungsgemeinschaft

Publisher

Wiley

Subject

Plant Science,Physiology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3