Similar diurnal, seasonal and annual rhythms in radial root expansion across two coexisting Mediterranean oak species

Author:

Alday Josu G12,Camarero Jesús Julio3,Revilla Jesús4,Resco de Dios Víctor125

Affiliation:

1. Joint Research Unit CTFC - AGROTECNIO, Av. Alcalde Rovira Roure 191, E-25198 Lleida, Spain

2. Department of Crop and Forest Sciences, University of Lleida, Av. Alcalde Rovira Roure 191, E-25198 Lleida, Spain

3. Instituto Pirenaico de Ecología (IPE-CSIC), Av. Montañana 1005, E-50192 Zaragoza, Spain

4. Instituto Pirenaico de Ecología (IPE-CSIC), Av. Ntra. Sra. de la Victoria, S/N, E-22700 Jaca, Huesca, Spain

5. School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, China

Abstract

Abstract Dendrometers are being increasingly used to measure stem radius changes in trees and to unravel the mechanisms underlying stem daily rhythms of radial expansion and contraction. Nevertheless, automated dendrometers have not been often used to measure root radius dynamics, their relationship with environmental variables and the influence of endogenous processes, especially in drought-prone Mediterranean areas. Here, we measured root radius dynamics of two coexisting oak species (the evergreen Quercus ilex L. and the deciduous Quercus faginea Lam). Our goals were to describe annual, seasonal and diurnal scale root radius patterns and to disentangle the role of different environmental parameters as drivers. Long-term high-resolution measurements (every 15 min over 7 years) were collected with automated point dendrometers on the main tree roots of five individuals per species. Root radius annual change patterns were bimodal and similar for both oak species. Quercus faginea Lam showed three times larger root increment in the spring than Q. ilex, but the bimodal pattern was stronger in Q. ilex, which showed a larger root increment in autumn. Quercus faginea Lam showed an earlier root phenological activation in the spring and in late summer compared with Q. ilex. The effects of environmental drivers across species were similar at daily scales: root radius increased with air temperature and soil moisture, and it decreased with rising vapor pressure deficit. Furthermore, daily root radius variations for both oak species were maintained after extracting statistically the environmental effects, which points toward a significant role of endogenous drivers. These differences in root radius change patterns at seasonal to daily scales likely result from the differences in leaf phenology and growth strategy. Quercus faginea Lam is deciduous and has a faster growing rate in spring than the evergreen Q. ilex, which can grow more in summer.

Funder

Spanish Government research

Ramón y Cajal fellowship

Juan de la Cierva and Ramón y Cajal-fellowships

Spanish Government, Ministry of Science

Publisher

Oxford University Press (OUP)

Subject

Plant Science,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3