Patterns, timing, and environmental drivers of secondary growth in two physiologically distinct Mediterranean alpine shrub species

Author:

Albrecht Eike Corina,Dobbert Svenja,Pape Roland,Löffler JörgORCID

Abstract

Abstract Alpine plants are particularly sensitive to climate change, and in the Mediterranean, less frequent winter cold and prolonged summer drought are expected to shift the growth patterns of species, altering their range and strategies to cope with these dual climatic stressors. However, adaptive strategies for drought and frost and their impact on performance of species are poorly explored, with critical timescales relevant for growth insufficiently reflected and a focus on a limited set of environmental drivers. Here, we explored the growth processes of two physiologically distinct Mediterranean alpine shrub species: Cytisus galianoi (green-stemmed species) and Astragalus granatensis (dimorphic species). By measuring the daily stem diameter changes of 26 specimens over six consecutive years (2015–2020) using dendrometers, as well as the corresponding soil temperature and soil moisture conditions, we identified bimodal annual growth patterns (i.e. two phases of growth), water-related timing of growth, and drought- and frost-related environmental constraints. By implementing correlation analyses, linear mixed effects models, and partial least-squares regression, we found pregrowth temperature and moisture drivers to be highly relevant for growth in both species, suggesting a temporal decoupling of growth and resource acquisition. However, the underlying mechanisms were contrasting. While the spring growth of C. galianoi was promoted by pregrowth winter conditions, the autumn growth of A. granatensis was promoted by pregrowth summer conditions. Thus, resource acquisition is likely to be optimized when the traits of species allow physiological activity at high gain and low costs, i.e. when adaptive mechanisms reduce resource consumption to cope with frost and drought. This is during winter for frost-tolerant green-stemmed species and during summer for drought-avoidant dimorphic species, leading to species-specific time windows of growth. Understanding these species-specific growth mechanisms contributes to answering the overarching question of when and how woody plants grow and helps in understanding their adaptability to future climate variability, particularly in sensitive alpine environments, where plant species are evolutionally adapted to physical peculiarities and reach their low-temperature limit.

Funder

Deutsche Forschungsgemeinschaft

Publisher

IOP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3