Research progress and application of ultrasonic‐ and microwave‐assisted food processing technology

Author:

Li Mengge1,Zhou Cunshan2ORCID,Wang Bo3,Zeng Shiyu1,Mu Rongyi1,Li Guohua1,Li Bingzheng4,Lv Weiqiao1ORCID

Affiliation:

1. College of Engineering China Agricultural University Beijing China

2. School of Food and Biological Engineering Jiangsu University Zhenjiang China

3. School of Behavioural and Health Science Australian Catholic University Sydney New South Wales Australia

4. Guangxi Bioscience and Technology Research Center Guangxi Academy of Sciences Nanning Guangxi China

Abstract

AbstractMicrowaves are electromagnetic waves of specific frequencies (300 MHz–3000 GHz), whereas ultrasonic is mechanical waves of specific frequencies. Microwave and ultrasonic technology as a new processing method has been widely used in food processing fields. Combined ultrasonic and microwave technology is exploited by researchers as an improvement technique and has been successfully applied in food processing such as thawing, drying, frying, extraction, and sterilization. This paper overviews the principle and characteristics of ultrasonic‐ and microwave‐assisted food processing techniques, particularly their combinations, design of equipment, and their applications in the processing of agricultural products such as thawing, drying, frying, extraction, and sterilization. The combination of ultrasonic and microwave is applied in food processing, where microwave enhances the heating rate, and ultrasonic improves the efficiency of heat and mass transfer. The synergy of the heating effect of microwave and the cavitation effect of ultrasonic improves processing efficiency and damages the cell structure of the material. The degradation of nutrient composition and energy consumption due to the short processing time of combined ultrasonic and microwave technology is decreased. Ultrasonic technology, as an auxiliary means of efficient microwave heating, is pollution‐free, highly efficient, and has a wide range of applications in food processing.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Subject

Food Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3