Finding Structure in One Child's Linguistic Experience

Author:

Wang Wentao1,Vong Wai Keen1,Kim Najoung12,Lake Brenden M.13

Affiliation:

1. Center for Data Science New York University

2. Department of Linguistics Boston University

3. Department of Psychology New York University

Abstract

AbstractNeural network models have recently made striking progress in natural language processing, but they are typically trained on orders of magnitude more language input than children receive. What can these neural networks, which are primarily distributional learners, learn from a naturalistic subset of a single child's experience? We examine this question using a recent longitudinal dataset collected from a single child, consisting of egocentric visual data paired with text transcripts. We train both language‐only and vision‐and‐language neural networks and analyze the linguistic knowledge they acquire. In parallel with findings from Jeffrey Elman's seminal work, the neural networks form emergent clusters of words corresponding to syntactic (nouns, transitive and intransitive verbs) and semantic categories (e.g., animals and clothing), based solely on one child's linguistic input. The networks also acquire sensitivity to acceptability contrasts from linguistic phenomena, such as determiner‐noun agreement and argument structure. We find that incorporating visual information produces an incremental gain in predicting words in context, especially for syntactic categories that are comparatively more easily grounded, such as nouns and verbs, but the underlying linguistic representations are not fundamentally altered. Our findings demonstrate which kinds of linguistic knowledge are learnable from a snapshot of a single child's real developmental experience.

Publisher

Wiley

Subject

Artificial Intelligence,Cognitive Neuroscience,Experimental and Cognitive Psychology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3