Analysis Methods in Neural Language Processing: A Survey

Author:

Belinkov Yonatan12,Glass James3

Affiliation:

1. MIT Computer Science and Artificial Intelligence Laboratory, United Stated.

2. Harvard School of Engineering and Applied Sciences Cambridge, MA, USA. belinkov@mit.edu

3. MIT Computer Science and Artificial Intelligence Laboratory, United Stated. glass@mit.edu

Abstract

Abstract The field of natural language processing has seen impressive progress in recent years, with neural network models replacing many of the traditional systems. A plethora of new models have been proposed, many of which are thought to be opaque compared to their feature-rich counterparts. This has led researchers to analyze, interpret, and evaluate neural networks in novel and more fine-grained ways. In this survey paper, we review analysis methods in neural language processing, categorize them according to prominent research trends, highlight existing limitations, and point to potential directions for future work.

Publisher

MIT Press - Journals

Subject

Artificial Intelligence,Computer Science Applications,Linguistics and Language,Human-Computer Interaction,Communication

Cited by 131 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. ToEx: Accelerating Generation Stage of Transformer-Based Language Models via Token-Adaptive Early Exit;IEEE Transactions on Computers;2024-09

2. Esale: Enhancing Code-Summary Alignment Learning for Source Code Summarization;IEEE Transactions on Software Engineering;2024-08

3. Axiomatic Causal Interventions for Reverse Engineering Relevance Computation in Neural Retrieval Models;Proceedings of the 47th International ACM SIGIR Conference on Research and Development in Information Retrieval;2024-07-10

4. Design and evaluation of a global workspace agent embodied in a realistic multimodal environment;Frontiers in Computational Neuroscience;2024-06-14

5. Text Adversarial Defense via Granular-Ball Sample Enhancement;Proceedings of the 2024 International Conference on Multimedia Retrieval;2024-05-30

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3