The Limitations of Large Language Models for Understanding Human Language and Cognition

Author:

Cuskley Christine1,Woods Rebecca1,Flaherty Molly2

Affiliation:

1. Language Evolution, Acquisition and Development Group, Newcastle University, Newcastle upon Tyne, UK

2. Department of Psychology, Davidson College, Davidson, NC, USA

Abstract

Abstract Researchers have recently argued that the capabilities of Large Language Models (LLMs) can provide new insights into longstanding debates about the role of learning and/or innateness in the development and evolution of human language. Here, we argue on two grounds that LLMs alone tell us very little about human language and cognition in terms of acquisition and evolution. First, any similarities between human language and the output of LLMs are purely functional. Borrowing the “four questions” framework from ethology, we argue that what LLMs do is superficially similar, but how they do it is not. In contrast to the rich multimodal data humans leverage in interactive language learning, LLMs rely on immersive exposure to vastly greater quantities of unimodal text data, with recent multimodal efforts built upon mappings between images and text. Second, turning to functional similarities between human language and LLM output, we show that human linguistic behavior is much broader. LLMs were designed to imitate the very specific behavior of human writing; while they do this impressively, the underlying mechanisms of these models limit their capacities for meaning and naturalistic interaction, and their potential for dealing with the diversity in human language. We conclude by emphasising that LLMs are not theories of language, but tools that may be used to study language, and that can only be effectively applied with specific hypotheses to motivate research.

Funder

British Academy Newton Alumni Fellowship

Publisher

MIT Press

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3