A novel ice storm manipulation experiment in a northern hardwood forest

Author:

Rustad Lindsey E.1,Campbell John L.1

Affiliation:

1. US Forest Service, Northern Research Station, Durham, NH 03824, USA.

Abstract

Ice storms are an important natural disturbance within forest ecosystems of the northeastern United States. Current models suggest that the frequency and severity of ice storms may increase in the coming decades in response to changes in climate. Because of the stochastic nature of ice storms and difficulties in predicting their occurrence, most past investigations of the ecological effects of ice storms across this region have been based on case studies following major storms. Here we report on a novel alternative approach where a glaze ice event was created experimentally under controlled conditions at the Hubbard Brook Experimental Forest, New Hampshire, USA. Water was sprayed over a northern hardwood forest canopy during February 2011, resulting in 7–12 mm radial ice thickness. Although this is below the minimum cutoff for ice storm warnings (13 mm of ice) issued by the US National Weather Service for the northeastern United States, this glaze ice treatment resulted in significant canopy damage, with 142 and 218 g C·m–2 of fine and coarse woody debris (respectively) deposited on the forest floor, a significant increase in leaf-on canopy openness, and increases in qualitative damage assessments following the treatment. This study demonstrates the feasibility of a relatively simple approach to simulating an ice storm and underscores the potency of this type of extreme event in shaping the future structure and function of northern hardwood forest ecosystems.

Publisher

Canadian Science Publishing

Subject

Ecology,Forestry,Global and Planetary Change

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3