A 6-year study on the mortality dynamics of sprouts germinated on Schima superba after a severe ice storm in southern China

Author:

Cao Yonghui,Zhou Benzhi,Wang Xiaoming

Abstract

IntroductionNatural disturbances modify forest structure by affecting regeneration dynamics and can change main ecosystem functions. An ice storm unusually took place in southern China in early 2008, which caused huge damage to forests. Resprouting of woody plants in a subtropical forest has received little attention. The role of survival time and mortality has been assessed for newsprouts after an ice storm.MethodsIn this study, damage types, in addition to the annual number and mortality rates of sprouts for all tagged and sampled resprouted Chinese gugertree (Schima superba Gardner & Champ.) individuals more than or equal to 4 cm in basal diameter (BD), were monitored. A total of six plots (20 m × 20 m) wererecorded in a subtropical secondary forest dominated by S. superba in Jianglang Mountain, China. This investigation had been conducted for six consecutive years.ResultsThe results showed that the survival rates of the sprouts were dependent on the year they sprouted. The earlier the year they boomed, the lower the mortality. The sprouts produced in 2008 were of the highest vitality and survival rates. Sprouts of the decapitated trees exhibited a better survival rate than those of uprooted or leaning trees. Sprouting position also plays a role in regeneration. Sprouts at the basal trunks of uprooted trees and the sprouts at the upper trunksof the decapitated trees exhibited the lowest mortality. The relationship between the accumulative mortality rate and the average diameter of new sprouts isaffected by damage types.DiscussionWe reported the mortality dynamics of sproutsin a subtropical forest after a rare natural disaster. This information could serve asa reference for the construction of a branch sprout dynamic model ormanagement of forest restoration after ice storms.

Publisher

Frontiers Media SA

Subject

Plant Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3