The impact of ice storms on mycorrhizal fungi varies by season and mycorrhizal type in a hardwood forest

Author:

Yancey C. E.12,Juice S. M.13,Classen A. T.4ORCID,Rustad L.5,Adair E. Carol1ORCID

Affiliation:

1. Rubenstein School of Environment and Natural Resources University of Vermont Burlington Vermont USA

2. Earth and Environmental Sciences University of Michigan Ann Arbor Michigan USA

3. Department of Biology West Virginia University Morgantown West Virginia USA

4. Ecology and Evolutionary Biology Department University of Michigan Ann Arbor Michigan USA

5. US Forest Service Northern Research Station Durham New Hampshire USA

Abstract

AbstractExtreme weather events, such as ice storms, are increasing and have potentially large impacts on forests, including belowground structures such as fine roots and mycorrhizal fungi. Many forest trees rely on the mutualistic relationship between mycorrhizal fungi and plants; a relationship that, when disrupted, can negatively impact tree net primary productivity. We took advantage of a large‐scale ice storm manipulation in the northeastern United States to test the hypothesis that increasing ice storm intensity and frequency would reduce ectomycorrhizal fungal root tips per unit root length and arbuscular mycorrhizal fungal structures per unit root length, hereafter colonization. We found that ice storm intensity reduced spring ectomycorrhizal fungal and arbuscular mycorrhizal fungal colonization. However, these patterns changed in the fall, where ice storm intensity still reduced ectomycorrhizal fungal root tips, but arbuscular mycorrhizal fungal colonization was higher in ice storm treatments than controls. The amount of ectomycorrhizal fungal root tips and arbuscular mycorrhizal fungal colonization differed seasonally: ectomycorrhizal fungal root tips were 1.7× higher in the spring than in the fall, while arbuscular mycorrhizal fungal colonization was 3× higher in the fall than in the spring. Our results indicate that mycorrhizal fungal colonization responses to ice storm severity vary temporally and by mycorrhizal fungal type. Further, arbuscular mycorrhizal fungi may recover from ice storms relatively quickly, potentially aiding forests in their recovery, whereas ice storms may have a long lasting impact on ectomycorrhizal fungi.

Funder

National Science Foundation

National Institute of Food and Agriculture

Publisher

Wiley

Subject

Ecology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3