Vasodilation contributes to the rapid hyperemia with rhythmic contractions in humans

Author:

Shoemaker J K,Tschakovsky M E,Hughson R L

Abstract

The hypothesis that the rapid increases in blood flow at the exercise onsetare exclusively due to the mechanical effects of the muscle pump was tested in six volunteersduring dynamic handgrip exercise. While supine, each subject completed a series of eightdifferent exercise tests in which brachial artery blood pressure (BP) was altered by25–30 mmHg (1 mmHg = 133.3 Pa) by positioning the arm above or below the heart.Two different weights, corresponding to 4.9 and 9.7% of maximal voluntary isometriccontraction, were raised and lowered at two different contraction rate schedules (1s:1s and 2s:2swork–rest) each with a 50% duty cycle. Beat-by-beat measures of mean blood velocity (MBV)(pulsed Doppler) were obtained at rest and for 5 min following step increases in work ratewith emphasis on the first 24 s. MBV was increased 50–100% above rest following the firstcontraction in both arm positions (p < 0.05). The increase in MBV from rest was greaterin the below position compared with above, and this effect was observed following the first andsubsequent contractions (p < 0.05). However, the positional effect on the increase inMBV could not be explained entirely by the ~40% greater BP in this position. Also, the greaterworkload resulted in greater increases in MBV as early as the first contraction, compared withthe light workload (p < 0.05) despite similar reductions in forearm volume followingsingle contractions. MBV was greater with faster contraction rate tests by 8 s of exercise. Itwas concluded that microvascular vasodilation must act in concert with a reduction in venouspressure to increase forearm blood flow within the initial 2–4 s of exercise.Key words: Doppler, mean blood velocity, arterial diameter,handgrip exercise, perfusion pressure.

Publisher

Canadian Science Publishing

Subject

Physiology (medical),Pharmacology,General Medicine,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3