Carbon response to changing winter conditions in northern regions: current understanding and emerging research needs

Author:

Campbell John L.1,Laudon Hjalmar2

Affiliation:

1. USDA Forest Service, Northern Research Station, 271 Mast Rd., Durham, NH 03824, USA.

2. Department of Forest Ecology and Management, Swedish University of Agricultural Sciences, SE-901 83 Umeå, Sweden.

Abstract

Winter is an important period for ecological processes in northern regions; however, compared to other seasons, the impacts of winter climate on ecosystems are poorly understood. In this review we evaluate the influence of winter climate on carbon dynamics based on the current state of knowledge and highlight emerging topics and future research challenges. Studies that have addressed this topic include plot-scale snow cover manipulation experiments that alter soil temperatures, empirical investigations along natural climatic gradients, laboratory temperature incubation experiments aimed at isolating influential factors in controlled environments, and time series of climate and carbon data that evaluate long-term natural variation and trends. Combined, these studies have demonstrated how winter climate can influence carbon in complex ways that in some cases are consistent across studies and in other cases are difficult to predict. Despite advances in our understanding, there is a great need for studies that further explore: (i) carry-over effects from one season to another, (ii) ecosystem processes in the fall–winter and winter–spring shoulder seasons, (iii) the impacts of extreme events, (iv) novel experimental approaches, and (v) improvements to models to include ecological effects of winter climate. We also call for the establishment of an international winter climate change research network that enhances collaboration and coordination among studies, which could provide a more thorough understanding of how the snow-covered period influences carbon cycling, thereby improving our ability to predict future responses to climate change.

Publisher

Canadian Science Publishing

Subject

General Environmental Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3