Long‐term changes in the daytime growing season carbon dioxide exchange following increased temperature and snow cover in arctic tundra

Author:

Hermesdorf Lena1ORCID,Liu Yijing1,Michelsen Anders12ORCID,Westergaard‐Nielsen Andreas1ORCID,Mortensen Louise Hindborg1,Jepsen Malte Skov13,Sigsgaard Charlotte1,Elberling Bo1

Affiliation:

1. Center for Permafrost (CENPERM), Department of Geosciences and Natural Resource Management University of Copenhagen Copenhagen Denmark

2. Department of Biology University of Copenhagen Copenhagen Denmark

3. National Museum of Denmark Environmental Archaeology and Materials Science Kongens Lyngby Denmark

Abstract

AbstractIncreasing temperatures and winter precipitation can influence the carbon (C) exchange rates in arctic ecosystems. Feedbacks can be both positive and negative, but the net effects are unclear and expected to vary strongly across the Arctic. There is a lack of understanding of the combined effects of increased summer warming and winter precipitation on the C balance in these ecosystems. Here we assess the short‐term (1–3 years) and long‐term (5–8 years) effects of increased snow depth (snow fences) (on average + 70 cm) and warming (open top chambers; 1–3°C increase) and the combination in a factorial design on all key components of the daytime carbon dioxide (CO2) fluxes in a wide‐spread heath tundra ecosystem in West Greenland. The warming treatment increased ecosystem respiration (ER) on a short‐ and long‐term basis, while gross ecosystem photosynthesis (GEP) was only increased in the long term. Despite the difference in the timing of responses of ER and GEP to the warming treatment, the net ecosystem exchange (NEE) of CO2 was unaffected in the short term and in the long term. Although the structural equation model (SEM) indicates a direct relationship between seasonal accumulated snow depth and ER and GEP, there were no significant effects of the snow addition treatment on ER or GEP measured over the summer period. The combination of warming and snow addition turned the plots into net daytime CO2 sources during the growing season. Interestingly, despite no significant changes in air temperature during the snow‐free time during the experiment, control plots as well as warming plots revealed significantly higher ER and GEP in the long term compared to the short term. This was in line with the satellite‐derived time‐integrated normalized difference vegetation index of the study area, suggesting that more factors than air temperature are drivers for changes in arctic tundra ecosystems.

Funder

Danmarks Grundforskningsfond

Publisher

Wiley

Subject

General Environmental Science,Ecology,Environmental Chemistry,Global and Planetary Change

Reference42 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3