Influence of indoleacetic-acid-producing Bacillus isolates on the nodulation of Phaseolus vulgaris by Rhizobium etli under gnotobiotic conditions

Author:

Srinivasan M.,Holl F. B.,Petersen D. J.

Abstract

Twenty-two Bacillus spp. isolates from the rhizosphere of Phaseolus vulgaris 'Contender' were identified using Biolog™, gas chromatographic fatty acid methyl ester, and 23S rDNA analyses. Some of the Bacillus isolates produced significant amounts of the phytohormone indoleacetic acid (IAA) when grown in a liquid culture medium supplemented with 100 μg L-tryptophan/L; less IAA was produced in culture medium not supplemented with L-tryptophan. Thin-layer chromatography, high-performance liquid chromatography, gas chromatography – mass spectrometry, and the avena coleoptile bioassay were used to identify and quantify IAA produced by Bacillus isolates. Significant differences were observed in the amounts of IAA produced by different strains of Bacillus, with amounts varying from 0.40 to 4.88 μg/mL. α-Methyltryptophan-resistant mutants of Bacillus exhibited altered IAA production and excreted tryptophan into the growing medium. The IAA-producing Bacillus isolates promoted root growth and (or) nodulation when coinoculated with Rhizobium etli (TAL 182) on Phaseolus vulgaris 'Contender' under gnotobiotic conditions in growth chambers. Coinoculation resulted in increased nodule number, nodule fresh weight, nitrogenase activity, leghemoglobin content, and total soluble protein content in the root nodules of Phaseolus vulgaris. In contrast, coinoculation with α-methyltryptophan mutants resulted in decreased nodulation, indicating that Bacillus isolates have a direct effect on either the Rhizobium or the plant and the effect may not be singularly attributed to their ability to produce IAA in vitro.Key words: Bacillus, indoleacetic acid production, nodulation enhancement.

Publisher

Canadian Science Publishing

Subject

Genetics,Molecular Biology,Applied Microbiology and Biotechnology,General Medicine,Immunology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3