Three-dimensional centrifuge modelling of basement excavation effects on an existing tunnel in dry sand

Author:

Ng Charles W.W.1,Shi Jiangwei1,Hong Yi2

Affiliation:

1. Department of Civil and Environmental Engineering, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong.

2. Research Center of Coastal and Urban Geotechnical Engineering, Department of Civil Engineering, Zhejiang University, China; formerly Department of Civil and Environmental Engineering, Hong Kong University of Science and Technology, Hong Kong.

Abstract

Basement excavation may induce unsymmetrical and highly skewed loadings and (or) stress changes in an existing tunnel, not only in the transverse, but also in the longitudinal direction of the tunnel. Although basement–tunnel interaction has attracted intense academic interest recently, it is often simply treated as a plane strain problem. In this study, however, based on a dimensional analysis of the governing parameters, two three-dimensional centrifuge tests were designed and carried out in dry sand to investigate the effects of a basement excavation on an existing tunnel located in two horizontal offsets in relation to the basement. In addition, a preliminary three-dimensional numerical analysis was conducted to back-analyse the centrifuge test and to investigate the effects of the tunnel cover-to-diameter and unloading ratios on the existing tunnel. For the specific conditions simulated and soil type tested, a maximum heave of about 0.07% of the final depth of the basement excavation (He) was induced in the tunnel that ran parallel to and beneath the basement. On the contrary, a maximum settlement of 0.014% He was induced in the tunnel located at the side of the basement. For the former tunnel, the influence zone by the basement excavation on vertical tunnel displacement along the longitudinal direction was 1.2L (basement length). By inspecting the measured strains in the longitudinal direction of the existing tunnel, it was found that the inflection point, where the shear force is at a maximum, was located at 0.8L away from the basement centre. Due to stress relief from the basement excavation, the tunnel located directly beneath the basement was vertically elongated, but the one that lay at the side of the basement was distorted. A preliminary numerical parametric study found that tunnel heave decreased as the cover-to-diameter ratio increased, but at a reduced rate.

Publisher

Canadian Science Publishing

Subject

Civil and Structural Engineering,Geotechnical Engineering and Engineering Geology

Reference25 articles.

Cited by 150 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3