Laboratory studies on fracturing of low-permeability soils

Author:

Alfaro Marolo C,Wong Ron CK

Abstract

Hydraulic and pneumatic fracturing have been used to improve the effectiveness of most in situ remediation methods for contaminated sites underlain with unfavorable low-permeability soils. This paper presents results of a laboratory experimental investigation to characterize the mechanisms related to the initiation pressure and growth of fractures stimulated from vertical and horizontal wells. The mechanisms of fracture in low-permeability soils appeared to be of a tensile failure mechanism enhanced by the generation of pore pressure as the soil around the well was being sheared due to the radial-tangential stress difference imposed by the injected pressure. The impacts of initial fracture slots on fracture orientation and initiation pressure were also investigated. The test results have demonstrated that the presence of initial fracture slots could reduce the injection pressure required to initiate fracture in the well. The initial slot, however, did not necessarily control the orientation of the propagating fracture. The effect of imposed stresses in the soil was evaluated also and was found to influence the orientation and propagation of fracture. Smaller stress contrast favored multiple deviated fractures, whereas larger stress contrast favored distinct fractures.Key words: soil fracturing, laboratory test, low-permeability soil, fracture propagation.

Publisher

Canadian Science Publishing

Subject

Civil and Structural Engineering,Geotechnical Engineering and Engineering Geology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3