Affiliation:
1. Civil Engineering Department, Engineering Faculty, Dumlupinar University, Kutahya 43100, Turkey (email: ).
Abstract
In this study, the wavelet–neural network structure that combines wavelet transform and artificial neural networks has been employed to forecast the river flows of Turkey. Discrete wavelet transforms, which are useful to obtain to the periodic components of the measured data, have significantly positive effects on artificial neural network modeling performance. Generally, the feed-forward back-propagation method was studied with respect to artificial neural network applications to water resources data. In this study, the performance of generalized neural networks and radial basis neural networks were compared with feed-forward back-propagation methods. Six different models were studied for forecasting of monthly river flows. It was seen that the wavelet and feed-forward back-propagation model was superior to the other models in terms of selected performance criteria.
Publisher
Canadian Science Publishing
Subject
General Environmental Science,Civil and Structural Engineering
Cited by
59 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献