Developing artificial neural network models of water treatment processes: a guide for utilities

Author:

Baxter C W,Stanley S J,Zhang Q,Smith Daniel W

Abstract

Because of the complex nature of drinking water treatment unit processes, utilities have difficulty quantifying the interactions and relationships that exist between process inputs and process outputs. Process models, where they exist, are often site specific and are unable to simultaneously handle continuous variations in more than one or two key process variables. The artificial neural network (ANN) technology is a robust artificial intelligence technology that can handle the complex and dynamic nature of treatment processes. As such, the technology has been gradually gaining acceptance in the drinking water treatment industry as a tool for process modelling and control. While publications on modelling results and applications abound, a detailed account of ANN modelling methodology is lacking. Presented is a detailed methodology for developing successful ANN models of drinking water treatment processes. The utility and applicability of this methodology is demonstrated through a case study where a successful ANN model to predict filtration performance was developed. Key words: artificial neural networks, process modelling, process optimization, water treatment.

Publisher

Thomas Telford Ltd.

Subject

General Environmental Science,Environmental Chemistry,Environmental Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3