Streamflow forecasting for the Hunza river basin using ANN, RNN, and ANFIS models

Author:

Khan Mehran1ORCID,Khan Afed Ullah1ORCID,Khan Jehanzeb2ORCID,Khan Sunaid1,Haleem Kashif1,Khan Fayaz Ahmad1

Affiliation:

1. a National Institute of Urban Infrastructure Planning, University of Engineering and Technology, Peshawar 25000, Pakistan

2. b Higher Education Department, Government Post Graduate College Kohat, KPK, Pakistan

Abstract

Abstract Streamflow forecasting is essential for planning, designing, and managing watershed systems. This research study investigates the use of artificial neural networks (ANN), recurrent neural networks (RNN), and adaptive neuro-fuzzy inference systems (ANFIS) for monthly streamflow forecasting in the Hunza River Basin of Pakistan. Different models were developed using precipitation, temperature, and discharge data. Two statistical performance indicators, i.e., root mean square error (RMSE) and coefficient of determination (R2), were used to assess the performance of machine learning techniques. Based on these performance indicators, the ANN model predicts monthly streamflow more accurately than the RNN and ANFIS models. To assess the performance of the ANN model, three architectures were used, namely 2-1-1, 2-2-1, and 2-3-1. The ANN architecture with a 2-3-1 configuration had higher R2 values of 0.9522 and 0.96998 for the training and testing phases, respectively. For each RNN architecture, three transfer functions were used, namely Tan-sig, Log-sig, and Purelin. The architecture with a 2-1-1 configuration based on tan-sig transfer function performed well in terms of R2 values, which were 0.7838 and 0.8439 for the training and testing phases, respectively. For the ANFIS model, the R2 values were 0.7023 and 0.7538 for both the training and testing phases, respectively. Overall, the findings suggest that the ANN model with a 2-3-1 architecture is the most effective for predicting monthly streamflow in the Hunza River Basin. This research can be helpful for planning, designing, and managing watershed systems, particularly in regions where streamflow forecasting is crucial for effective water resource management.

Publisher

IWA Publishing

Subject

Water Science and Technology

Reference37 articles.

1. Spatial patterns and variation of suspended sediment yield in the upper Indus river basin, northern Pakistan;Journal of Hydrology,2007

2. Streamflow prediction of Karuvannur River Basin using ANFIS, ANN and MNLR models;Procedia Technology,2016

3. Jordan recurrent neural network versus IHACRES in modelling daily streamflows;Journal of Hydrology,2008

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3