Oxyhalogen–sulfur chemistry — Kinetics and mechanism of oxidation of methionine by aqueous iodine and acidified iodate

Author:

Chikwana Edward1,Davis Bradley1,Morakinyo Moshood K.1,Simoyi Reuben H.1

Affiliation:

1. Department of Chemistry, Portland State University, Portland, OR 97207-0751, USA.

Abstract

The oxidation of methionine (Met) by acidic iodate and aqueous iodine was studied. Though the reaction is a simple two-electron oxidation to give methionine sulfoxide (Met–S=O), the dynamics of the reaction are, however, very complex, characterized by clock reaction characteristics and transient formation of iodine. In excess methionine conditions, the stoichiometry of the reaction was deduced to be IO3 + 3Met → I + 3Met–S=O. In excess iodate, the iodide product reacts with iodate to give a final product of molecular iodine and a 2:5 stoichiometry: 2IO3 + 5Met + 2H+→ I2 + 5Met–S=O + H2O. The direct reaction of iodine and methionine is slow and mildly autoinhibitory, which explains the transient formation of iodine, even in conditions of excess methionine in which iodine is not a final product. The whole reaction scheme could be simulated by a simple network of 11 reactions.

Publisher

Canadian Science Publishing

Subject

Organic Chemistry,General Chemistry,Catalysis

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3