Author:
CAO Jin-Li,SHAO Ya-Dong,ZOU Ying-Ning,WU Qiang-Sheng,YANG Tian-Yuan,KUČA Kamil
Abstract
The present study aimed to evaluate the effect of an arbuscular mycorrhizal fungus (AMF), Clariodeoglomus etunicatum, on leaf food quality and relevant gene expression levels of tea (Camellia sinensis cv. ‘Fuding Dabaicha’) seedlings exposed to 0.5 μM P (P0.5) and 50 μM P (P50) levels. Twenty-four weeks later, the seedlings recorded higher root mycorrhizal fungal colonization in P50 than in P0.5. AMF-inoculated tea plants represented significantly higher leaf fructose and glucose contents and lower sucrose content than non-inoculated plants, irrespective of substate P levels. AMF treatment also increased total amino acids content in P0.5 and P50, accompanied with higher expression of glutamate dehydrogenase (CsGDH) and lower expression of glutamine synthetase (CsGS) and glutamine oxoglutarate aminotransferase (CsGOGAT). The total flavonoid content was higher in mycorrhizal versus non-mycorrhizal plants under P0.5 and P50, together with induced expression of phenylalanine ammonia-lyase (CsPAL) and cinnamic acid 4-hydroxylase (CsC4H). Mycorrhizal fungal inoculation improved catechins content, which is due to the up-regulated expression of flavanone 3-hydroxylase (CsF3H), flavonoid 3'-hydroxylase (CsF3'H), dihydroflavonol 4-reductase (CsDFR), leucoanthocyanidin reductase (CsLAR), anthocyanidin reductase (CsANR), and chalcone isomerase (CsCHI) under P0.5. However, under P50, the gene involved in catechins synthesis was not affected or down-regulated by mycorrhization, implying a complex mechanism (e.g. nutrient improvement). AMF also inhibited the tea caffeine synthase 1 (CsTCS1) expression regardless of P levels. Therefore, the results of this study concluded that inoculation with C. etunicatum improves leaf food quality of tea exposed to P stress, but the improved mechanisms were different between P0.5 and P50.
Publisher
University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca
Subject
Horticulture,Plant Science,Agronomy and Crop Science
Reference40 articles.
1. Ahmed S, Griffin TS, Kraner D, Schaffner MK, Sharma D, Hazel M, … Cash SB (2019). Environmental factors variably impact tea secondary metabolites in the context of climate change. Frontiers in Plant Science 10:939. https://doi.org/10.3389/fpls.2019.00939
2. Bradford MM (1970). A rapid and sensitive method for the quantification of microgram quantities of proteins utilizing the principle-dye binding. Analytical Biochemistry 72:248-252. https://doi.org/10.1016/0003-2697(76)90527-3
3. Ceasar SA (2020). Regulation of low phosphate stress in plants. In: Tripathi DK, Singh VP, Chauhan DK, Sharma S, Prasad SM, Dubey NK, Ramawat N (Eds). Plant Life under Changing Environment: Responses and Management. Academic Press, pp 123-156.
4. Cheng SY, Wang Y, Fei YJ, Zhu GC (2004). Studies on the effects of different treatments on flavonoids contents in Ginkgo biloba leaves and their regulating mechanism. Journal of Fruit Science 21:116-119 (in Chinese with English abstract).
5. de La Rosa LA, Alvarez-Parrilla E, Shahidi F (2011). Phenolic compounds and antioxidant activity of kernels and shells of Mexican pecan (Carya illinoinensis). Journal of Agricultural and Food Chemistry 59:152-162. https://doi.org/10.1021/jf1034306