Exogenous Easily Extractable Glomalin-Related Soil Protein Induces Differential Response in Plant Growth of Tea Plants via Regulating Water Channel Protein Expression

Author:

Wu Xiao-Long1,Hao Yong2,Dai Feng-Jun1,Chen Xin1,Liu Chun-Yan1ORCID

Affiliation:

1. College of Horticulture and Gardening, Yangtze University, Jingzhou 434025, China

2. College of Urban Construction, Yangtze University, Jingzhou 434023, China

Abstract

Glomalin, a glycoprotein secreted by arbuscular mycorrhizal fungi (AMFs), exhibits multiple beneficial functions in regard to plant growth. However, the roles and regulatory mechanisms of exogenous easily extractable glomalin-related soil protein (EE-GRSP) in water and their effects on the quality of tea plants (Camellia sinensis (L.) O. Ktze.) remain unclear. The present study aimed to investigate the effects of a quarter-strength exogenous EE-GRSP solution (1/4 EE-GRSP), half-strength exogenous EE-GRSP solution (1/2 EE-GRSP), three-quarter-strength exogenous EE-GRSP solution (3/4 EE-GRSP), and full-strength exogenous EE-GRSP solution (full EE-GRSP) on plant growth, the root system architecture, leaf water status, and the tea quality of tea seedlings, along with examining the changes in the relative expression of water channel proteins (AQPs) in tea plants. The results indicated that exogenous EE-GRSP of different strengths had different effects on both the growth performance (height, leaf numbers, and biomass) and root architecture parameters of tea seedlings, and the best positive effects on plant growth and the root architecture appeared under the three-quarter-strength exogenous EE-GRSP treatment. Similarly, the exogenous EE-GRSP application also differently affected tea quality indicators, in which only the quarter- and half-strength exogenous EE-GRSP solutions significantly increased most of the indicators, including carbohydrates, tea polyphenols, total amino acids, catechins, and flavonoids. Moreover, the half- and three-quarter-strength exogenous EE-GRSP treatments significantly increased the leaf relative water content (LRWC), but all of the exogenous EE-GRSP treatments significantly decreased the leaf water potential (LWP). Furthermore, the expression of AQP genes in the root system of tea plants was related to the strength of the exogenous EE-GRSP treatments, and different genes were significantly up-regulated or down-regulated under the treatment of exogenous EE-GRSP at different strengths. Moreover, the correlation analysis showed that most of the relative expression of AQPs was significantly and positively correlated with tea plant growth, the root architecture, and the leaf relative water content, but negatively correlated with tea quality indicators; however, the expression of CsNIPs and CsSIPs was markedly and negatively correlated with plant growth performance. Therefore, we speculated that the application of exogenous EE-GRSP could facilitate plant growth and improve the quality indirectly by regulating the expression of root AQPs, thus ameliorating the water uptake and nutrient accumulation in tea plants.

Funder

Open Fund of the State Key Laboratory of Tea Plant Biology and Utilization

Publisher

MDPI AG

Subject

Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3