Abstract
The feasibility of transient liquid phase (TLP) bonding technology for high-temperature endurable power electronics packaging has been evaluated in this study. An Ag-Sn3.0Ag0.5Cu hybrid solder paste was fabricated and used as a bonding material. The bonding reactions between chip/substrate and hybrid solder paste and die shear strengths of the TLP-bonded joints were evaluated during conventional soldering and vacuum soldering processes. Compared to the conventional soldering, the vacuum-soldered joints had fewer voids and relatively good metallurgical microstructures. After TLP bonding, (Cu,Ni)6Sn5, Ag3Sn, and Cu6Sn5 intermetallic compounds formed at the chip interface, in the middle of the joint, and at the bottom interface, respectively. It was confirmed that the vacuum soldering process could create good interfacial uniformity with minimal voids in the Si chip/ceramic substrate joints. The formation of voids during TLP bonding significantly affected the mechanical shear strength of the TLP-bonded joints. The vacuum-soldered joints had high shear strength values of approximately 40 MPa. To ensure the high joint strength and long-term reliability of Sn-based TLP-bonded joints, critical void control in the joints is needed.
Funder
Chungbuk National University
Korea Institute for Advancement of Technology
Ministry of Trade, Industry and Energy
Publisher
The Korean Welding and Joining Society
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献