Sentiment Analysis Of Government Policy On Corona Case Using Naive Bayes Algorithm

Author:

Isnain Auliya Rahman,Marga Nurman Satya,Alita Debby

Abstract

 The Indonesian government has enforced the New Normal rule in maintaining economic stabilization and also restraining the spread of the virus during the Covid 19 pandemic. This has become a hot topic of conversation on social media Twitter, many people think positive and negative.The research conducted is a representation of text mining and text processing using machine learning using the Naive Bayes Classifier classification method, the objective of the analysis is to determine whether public sentiment towards the New Normal policy is positive or negative, and also as a basis for measuring the performance of the TF-IDF feature extraction and N-gram in machine learning uses the Naive Bayes method.The results of this study resulted in the accuracy rate of the Naive Bayes method with the TF-IDF feature selection. The total accuracy was 81% with a Precision value of 78%, Recall 91%, and f1-Score 84%. The highest results were obtained from the use of the Naive Bayes and Trigram algorithm parameters, namely 84%, namely 84% Precision, 86% Recall, and 85% f1-Score. The Naive Bayes algorithm with the use of the trigram type N-Gram feature extraction shows a fairly good performance in the process of classifying public tweet data.

Publisher

Universitas Gadjah Mada

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3