Dialogue Sentiment Analysis Based on Dialogue Structure Pre-training

Author:

Yang Liang1,Yang Qi1,Zeng Jingjie1,Peng Tao1,Yang Zhihao1,Lin Hongfei1

Affiliation:

1. Dalian University of Technology

Abstract

Abstract The task of dialogue sentiment analysis aims to identify the sentiment polarity of utterances in the context of a dialogue. Pre-trained models often struggle to capture the logical structure of a dialogue, making this task challenging. To address this issue, we propose a dialogue sentiment analysis framework that leverages pre-training on dialogue structure. Our proposed framework includes three sub-tasks for pre-training: utterance order sorting, sentence backbone regularization, and sentiment shift detection. These tasks are designed to improve the model's ability to mine dialogue logical relationships and sentiment interactions. By focusing on learning the logical structure of dialogues and the perception of sentiment interactions, our framework is able to improve the performance of pre-trained models on recognizing the sentiment polarity of dialogues. This is demonstrated by the convincing results obtained on the public MEISD dataset.

Publisher

Research Square Platform LLC

Reference42 articles.

1. Liu, Bing (2012) Sentiment analysis and opinion mining. Synthesis lectures on human language technologies 5(1): 1--167 Morgan & Claypool Publishers

2. Mahesh G. Huddar and Sanjeev S. Sannakki and Vijay S. Rajpurohit (2021) Attention-based Multi-modal Sentiment Analysis and Emotion Detection in Conversation using {RNN}. Int. J. Interact. Multim. Artif. Intell. 6(6): 112--121 https://doi.org/10.9781/IJIMAI.2020.07.004, dblp computer science bibliography, https://dblp.org, https://dblp.org/rec/journals/ijimai/HuddarSR21.bib, Fri, 04 Jun 2021 14:36:43 +0200, https://doi.org/10.9781/ijimai.2020.07.004

3. Isnain, Auliya Rahman and Marga, Nurman Satya and Alita, Debby (2021) Sentiment Analysis Of Government Policy On Corona Case Using Naive Bayes Algorithm. IJCCS (Indonesian Journal of Computing and Cybernetics Systems) 15(1): 55--64

4. Ver{\'{o}}nica P{\'{e}}rez{-}Rosas and Rada Mihalcea and Louis{-}Philippe Morency (2013) Utterance-Level Multimodal Sentiment Analysis. The Association for Computer Linguistics, Bulgaria, dblp computer science bibliography, https://dblp.org, https://dblp.org/rec/conf/acl/Perez-RosasMM13.bib, Fri, 06 Aug 2021 00:41:00 +0200, https://aclanthology.org/P13-1096/, 973--982, Proceedings of the 51st Annual Meeting of the Association for Computational Linguistics, {ACL} 2013, 4-9 August 2013, Sofia, Bulgaria, Volume 1: Long Papers

5. Jacob Devlin and Ming{-}Wei Chang and Kenton Lee and Kristina Toutanova (2019) {BERT:} Pre-training of Deep Bidirectional Transformers for Language Understanding. Association for Computational Linguistics, {USA}, dblp computer science bibliography, https://dblp.org, https://dblp.org/rec/conf/naacl/DevlinCLT19.bib, Mon, 26 Sep 2022 12:21:55 +0200, 10.18653/V1/N19-1423, https://doi.org/10.18653/v1/n19-1423, 4171--4186, Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, {NAACL-HLT} 2019, Minneapolis, MN, USA, June 2-7, 2019, Volume 1 (Long and Short Papers), Jill Burstein and Christy Doran and Thamar Solorio

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3