Cyber Crime Identifying Using Machine Learning Techniques - Based Sentiment Analysis

Author:

Yunitasari Yessi1,Sofyana Latjuba S.T.T.1,Siregar Maria Ulfah2

Affiliation:

1. Universitas PGRI Madiun

2. UIN Sunan Kalijaga Yogyakarta

Abstract

Social media analytics is a form of information analytics that is quite important in today's cyber situation. Cybercrime is criminal behaviour based on computers and internet networks. Cybercriminals usually hack systems to obtain the personal information of victims. There are many types of cybercrimes. There are four types of cybercrimes: Phishing scams, Hacking, Cyber Stalking and Cyber Bullying. This research aims to help the process analysis by the Police or investigative institutions of the private sector in knowing the results of public sentiment on social media related to current cyber crimes. Ciber Crime identifying using machine learning techniques, based sentiment analysis. Method used for sentiment analysis related to cybercrime is Random Forest, Naïve Bayes, and KNN. The highest accuracy value of the three methods tried is the Naive Bayes algorithm of 99.45%. The highest precision value uses the Naive Bayes algorithm of 99.80%, and the highest recall value uses the random forest algorithm of 100%.

Publisher

Trans Tech Publications Ltd

Reference13 articles.

1. Amin Muftiadi, "Studi kasus keamanan jaringan komputer: analisis ancaman phisingterhadap layanan online banking," Hexatech J. Ilm. Tek., vol. 1, no. 2, p.60–65, 2022.

2. Fenomena Cyberbullying pada Remaja;Rifauddin;Khizanah al-Hikmah : Jurnal Ilmu Perpustakaan, Informasi, dan Kearsipan,2016

3. INVESTIGASI DAN ANALISIS FORENSIK DIGITAL PADA PERCAKAPAN GRUP WHATSAPP MENGGUNAKAN NIST SP 800-86 dan SUPPORT VECTOR MACHINE;Hariyadi;Cyber Security dan Forensik Digital,2020

4. ANALISIS SENTIMEN TWEET KASUS KEBOCORAN DATA PENGGUNAAN FACEBOOK OLEH CAMBRIGDE ANALYTICA;Sholehurrohman;Jurnal Pepadun,2022

5. A. Gupta, P. Matta, and B. Pant, "A comparative study of different sentiment analysis classifiers for cybercrime detection on social media platforms," in AIP Conference Proceedings, 2022, p.060005.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3