Exploring Low-IFT Foam EOR in Fractured Carbonates: Success and Particular Challenges of Sub-10-md Limestone

Author:

Dong Pengfei1,Puerto Maura1,Jian Guoqing1,Ma Kun2,Mateen Khalid2,Ren Guangwei2,Bourdarot Gilles2,Morel Danielle2,Biswal Sibani Lisa1,Hirasaki George1

Affiliation:

1. Rice University

2. Total

Abstract

Summary The high formation heterogeneity in naturally fractured limestone reservoirs requires mobility control agents to improve sweep efficiency and boost oil recovery. However, typical mobility control agents, such as polymers and gels, are impractical in tight sub-10-md formations due to potential plugging issues. The objective of this study is to demonstrate the feasibility of a low-interfacial-tension (low-IFT) foam process in fractured low-permeability limestone reservoirs and to investigate relevant geochemical interactions. The low-IFT foam process was investigated through coreflood experiments in homogeneous and fractured oil-wet cores with sub-10-md matrix permeability. The performance of a low-IFT foaming formulation and a well-known standard foamer [alpha olefin sulfonate (AOS) C14-16] were compared in terms of the efficiency of oil recovery. The effluent ionic concentrations were measured to understand how the geochemical properties of limestone influenced the low-IFT foam process. Aqueous stability and phase behavior tests with crushed core materials and brines containing various divalent ion concentrations were conducted to interpret the observations in the coreflood experiments. Low-IFT foam process can achieve significant incremental oil recovery in fractured oil-wet limestone reservoirs with sub-10-md matrix permeability. Low-IFT foam flooding in a fractured oil-wet limestone core with 5-md matrix permeability achieved 64% incremental oil recovery compared to waterflooding. In this process, because of the significantly lower capillary entry pressure for surfactant solution compared to gas, the foam primarily diverted surfactant solution from the fracture into the matrix. This selective diversion effect resulted in surfactant or weak foam flooding in the tight matrix and hence improved the invading fluid flow in the matrix. Meanwhile, the low-IFT property of the foaming formulation mobilized the remaining oil in the matrix. This oil mobilization effect of the low-IFT formulation achieved lower remaining oil saturation in the swept zones compared with the formulation lacking low-IFT property with oil. The limestone geochemical instability caused additional challenges for the low-IFT foam process in limestone reservoirs compared to dolomite reservoirs. The reactions of calcite with injected fluids—such as mineral dissolution and the exchange of calcium and magnesium—were found to increase the Ca2+ concentration in the produced fluids. Because the low-IFT foam process is sensitive to brine salinity, the additional Ca2+ may cause potential surfactant precipitation and unfavorable over-optimum conditions. It, therefore, may cause injectivity and phase-trapping issues especially in the homogeneous limestone. Results in this work demonstrated that despite the challenges associated with limestone dissolution, the low-IFT foam process can remarkably extend chemical enhanced oil recovery (EOR) in fractured oil-wet tight reservoirs with matrix permeability as low as 5 md.

Publisher

Society of Petroleum Engineers (SPE)

Subject

Geotechnical Engineering and Engineering Geology,Energy Engineering and Power Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3