Nanoparticle-Surfactant Stabilized Strong Foam for Enhanced Oil Recovery in High-Salinity Fractured Carbonate Reservoirs

Author:

Wang Xuezhen1,Zhou Jimin1,Pang Jieqiong1,Mohanty Kishore K.2ORCID

Affiliation:

1. The University of Texas at Austin

2. The University of Texas at Austin (Corresponding author)

Abstract

Summary Foam flooding can minimize bypassing in gasfloods in fractured reservoirs. Finding a foam formulation effective in high-salinity brine is challenging, especially with divalent cations, e.g., American Petroleum Institute (API) brine (8% NaCl with 2% CaCl2). When formulating with nanoparticles, the colloidal dispersion stability is difficult due to the dramatic reduction in zeta potential and the Debye length at high salinity. The aim of this work was to develop a strong foam in API brine at the ambient temperature, using a nonionic surfactant and ethyl cellulose nanoparticles (ECNP), for gasflooding in fractured carbonate reservoirs. ECNPs was synthesized and dispersed in API brine using a nonionic surfactant (also denoted as SF). SF and SF/ECNP foams were generated, and their stability was studied at atmospheric pressure and 950 psi. Foam mobility was measured in a sandpack at high pressure. Foam flood experiments were conducted in oil-saturated fractured carbonate cores. The nonionic surfactant proved to be a good dispersion agent for ECNP in API brine. The SF/ECNP mixture stabilized foam in API brine, even in the presence of oil. Injecting a partially miscible gas (below its minimum miscibility pressure) as an SF foam into a fractured core more than doubles the oil recovery over injection of the gas alone. The injection of the strong foam (SF/ECNP) further improves the oil recovery over that of the SF foam, indicating the synergy between ECNP and surfactant. ECNP accumulates in the foam lamella and induces larger pressure gradients in the fracture to divert more gas into the matrix for oil displacement.

Publisher

Society of Petroleum Engineers (SPE)

Subject

Geotechnical Engineering and Engineering Geology,Energy Engineering and Power Technology

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3