Experimental Study and Molecular Simulation of the Effect of Temperature on the Stability of Surfactant Foam

Author:

Nie Xin1,Liu Shuo2ORCID,Dong Zhiyu1,Dong Kaili1,Zhang Yulong23,Wang Junfeng1

Affiliation:

1. College of Mining Engineering, Taiyuan University of Technology, Taiyuan 030024, China

2. College of Safety and Emergency Management Engineering, Taiyuan University of Technology, Taiyuan 030024, China

3. Key Laboratory of Coal Science and Technology, Taiyuan University of Technology, Ministry of Education and Shanxi Province, Taiyuan 030024, China

Abstract

Temperature changes in CO2 foam-fracturing construction can easily affect surfactant foam stability. To investigate the effect of temperature on the foam stability of different types of surfactants, this study measured the foam half-life and viscosity of four typical surfactants, CTAB, LAS-30, HSB1214, and TX-10, using a novel self-designed and built foam performance measurement device. The effects of temperature on foam half-life and viscosity were studied. The results show that as the temperature increased, the half-life shortened, and the viscosity of the liquid phase decreased, which led to a decrease in foam stability. Moreover, using Materials Studio, a type of molecular simulation software, an interfacial model of the foam film was constructed to calculate the IFE and the self-diffusion coefficient of water molecules at 300 ps after the equilibrium of the foam system to investigate the mechanism of temperature influence on the stability of the foam. The results show that, for CTAB, LAS-30, HSB1214, and TX-10, the temperature increases from 15 °C to 45 °C, the IFE is enhanced by −50.05%, −59.10%, −64.21%, and −44.26%, respectively, the interfacial system changes from a low-energy state to a high-energy state, and the interfacial stability decreases. Meanwhile, Dwater increased 1.10-fold, 0.78-fold, 1.43-fold, and 0.64-fold, respectively, which accelerated the diffusion and migration of water molecules, weakened the intermolecular forces, and accelerated the instability of the foam system.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3