Effect of Proppant Settling in the Wellbore on Proppant Distribution in Perforation Clusters

Author:

Aijaz Muhammad Jahanzaib1,Sharma Mukul Mani1

Affiliation:

1. The University of Texas at Austin

Abstract

AbstractOur goal in this paper is to quantify the impact of proppant settling in the wellbore on the efficiency and distribution of proppant into perforation clusters. This phenomenon has been experimentally studied on the lab scale in the past but no field-scale simulations have been performed to quantify the amount of proppant settled in the wellbore and its impact on proppant placement.Critical velocity correlations are used to estimate the velocity at which proppant settling can occur and incorporates them into a numerical simulator for simulating proppant transport in multiple perforation clusters. The proppant distribution in each perforation cluster and the amount of proppant settling in individual wellbore sections is computed. Comparisons made with cases where no settling is considered clearly show that the total proppant mass entering individual perforation clusters is impacted when proppant settling is considered. A parametric study is then conducted to determine which parameters (number of perforation clusters, flow rate, proppant size etc.) have the largest impact on proppant placement.Our results show that proppant settling occurs primarily at the toe-side of the stage where the wellbore fluid velocity drops below the critical velocity. Wellbore settling occurs mainly near the last cluster as the fluid leaks off into all the heel-side perforations. Proppant wellbore settling cannot continue indefinitely because as proppant deposits in a wellbore section, the flow area is reduced and this in turn increases the flow velocity to above the resuspension velocity. The effect of proppant settling becomes more pronounced as the number of clusters in the stage increases. It is most pronounced in refracturing scenarios where a large number of perforations are open to flow. The settling progresses towards the upstream clusters as the toe side clusters are plugged and the critical velocity in that region drops below a threshold value. The injection rate, fluid viscosity, proppant diameter, proppant density and fluid density also have a significant impact on the total amount of proppant that settles.This paper quantifies proppant placement in perforation clusters and proppant settling in wellbore sections during a fracturing stage. It provides a quantitative estimate and an explanation for the combined effects of proppant inertia, perforation bridging and proppant wellbore settling. The results suggest many ways to minimize the impact of proppant settling in the wellbore.

Publisher

SPE

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3