Proppant Transport and Behavior in Horizontal Wellbores Using Low Viscosity Fluids

Author:

Ahmad Faraj A.1,Miskimins Jennifer L.1

Affiliation:

1. Colorado School of Mines

Abstract

Abstract One of the most significant components of hydraulic fracturing modeling is the prediction of proppant transport in both the wellbore and fractures, as the resulting conductivity has a great impact on post treatment production. In multistage horizontal well treatments, the distribution of proppant between multiple perforation clusters has a substantial impact on treatment behaviors and results. If the proppant is not evenly distributed between the perforation clusters, the perforated intervals will not be equally stimulated. Only a few studies evaluating proppant transport in horizontal wellbores are found in the literature. This paper aims to investigate the parameters that have a large influence on the proppant settling in the wellbore and distribution of the proppants between perforation clusters, as well as providing insight into post-treatment flowback behaviors. The approach to this work uses a model of a horizontal wellbore with three perforation clusters at shot densities of 4 SPF with 90-degree phasing. Fresh water was used as a carrier fluid to transport the proppant in the horizontal pipe. Two different types of proppants, sand and ultra-light-weight ceramic, of varying mesh sizes were used. Two design parameters, injection rate and proppant concentration, have been varied throughout the experimental tests. The results from this work demonstrate that proppant settling velocity in the wellbore is different for each type of proppant. These differences are mainly due to the changes in the proppant concentration as well as the changes in the size and shape of proppant particles. The uneven proppant distribution between perforation clusters was mostly observed in cases where the density of proppnat was relatively high and at low flow rates. However, at high flow rates, the toe cluster received the largest amount of proppant. This occurs because the high flow rates near the first and second clusters prevent the proppant particles from turning into the perforation tunnels. The ultra-light weight ceramic shows the most even distribution between the perforation clusters since the density difference between the carrier fluid and the proppant particle is relatively low. The most significant finding is that the low viscosity fluid (fresh water) is not an effective transport system for larger particles with relatively high densities. The results obtained from this study can be used to improve the understanding of good practices of fracture stimulation flushing, as well as proppant distribution/deposition throughout the horizontal pipe during the fracture stimulation treatment and during flowback processes.

Publisher

SPE

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3