Proppant Distribution in Multistage Hydraulic Fractured Wells: A Large-Scale Inside-Casing Investigation

Author:

Crespo Freddy1,Aven Nevil Kunnath1,Cortez Janette1,Soliman M. Y.2,Bokane Atul1,Jain Siddharth1,Deshpande Yogesh1

Affiliation:

1. Halliburton

2. Texas Tech University

Abstract

Abstract Effectively stimulating multiple pay zones using separate fracturing treatments can be costly and time consuming. By contrast, multistage fracturing is a widely used technique that offers the advantage of stimulating significant portions of the reservoir by fracturing through multiple perforations simultaneously. While the multistage fracturing method known as "plug and perf" has been proven to be an effective method for developing unconventional resources, it presents the challenge of achieving even proppant distribution to all perforation clusters during each stimulation stage. It is commonly assumed that the plug and perforate multistage fracturing technique provides the planned fluid and proppant distribution among the fractures that are simultaneously taking fluid during pumping a single stage. However, parameters, such as the reservoir properties, fluid rheology, and proppant characteristics have demonstrated a strong influence on the actual proppant and fluid distribution into the various perforations. Field data indicates, in many cases, that some of the clusters do not contribute to production. This indication supports the hypothesis that actual proppant and fluid distribution along the stimulated clusters might be different from the assumed uniform distribution. Some believe that the amount of proppant appears to be heavily weighted toward the end of the perforated interval, which results in uneven proppant distribution. Empirical data as well as laboratory tests have yet to be challenged against the few studies that exist. This paper presents a first- of-its-kind large-scale investigation that was conducted to study proppant distribution among separated perforations along a horizontal interval. These experiments closely simulate any single stage during the plug-and-perforate fracturing process. The effect of various fluid specific gravities, fluid viscosities, proppant specific gravities, proppant sizes, and slurry flow rates were investigated while keeping outside-casing parameters constant. The various aspects of proppant and fluid flow through a perforated interval are discussed. The experimental efforts discussed in this paper create a better understanding of fluid and proppant behavior in this widely used fracturing process to help achieve maximum efficiency.

Publisher

SPE

Cited by 23 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3