Closing the Gap: Fracture Half Length from Design, Buildup, and Production Analysis

Author:

Barree R. D.1,Cox S. A.2,Gilbert J. V.2,Dobson M.2

Affiliation:

1. Barree & Assocs.

2. Marathon Oil Co.

Abstract

Summary It is commonly observed that hydraulically fractured wells perform as though the "effective" fracture half-length is much lower than the designed half-length. This observation has been explained by various models, including poor fracture-height containment, poor proppant transport, proppant falling out of zone (convection), ineffective proppant-pack cleanup, capillary-phase trapping, multiphase flow, gravitational-phase segregation, and non-Darcy flow, with combinations of any of these mechanisms. With recent improvements in diagnostic measurements of fracture geometry, some of these explanations have lost credibility, but the problem of low effective fracture length persists. This paper presents detailed evaluations of hydraulically fractured well behavior with continuous production analysis, pressure-transient (buildup) analysis, and fracture-treatment evaluation by use of actual field data from a tight-gas reservoir in the Rocky Mountain Region. The various analyses explain the observed producing behavior of the well and lead to a consistent determination of the actual effective fracture half-length compared with the physically created or propped length. Problems relating to semantics and inconsistent fracture and reservoir description, especially the physical processes encompassed by various analytical techniques, will be addressed. Methods will be outlined for predicting the useful effective length from available proppant-conductivity data. The process outlined helps to close the gap between designed-fracture and producing lengths and points out the causes for the remaining system bottlenecks that limit post-fracture well productivity. Finally, the understanding of these mechanisms provides a means to arrive at an economical optimum fracture-treatment design for a reservoir once key parameters are known.

Publisher

Society of Petroleum Engineers (SPE)

Subject

Fuel Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3