Probabilistic estimation of hydraulic fracture half-lengths: validating the Gaussian pressure-transient method with the traditional rate transient analysis-method (Wolfcamp case study)

Author:

Alvayed DandiORCID,Khalid Mohammed Sofian Ali,Dafaalla Moaz,Ali Ahmed,Ibrahim Ahmed Farid,Weijermars Ruud

Abstract

AbstractDespite significant advancements in geomodelling technologies, accurately estimating hydraulic fracture half-length remains a challenging task. This paper introduces a detailed estimation approach using the Gaussian Pressure Transient (GPT) method, which is relatively new. The GPT method is iterative, ensuring fast convergence and providing reliable estimations of hydraulic fracture half-length based on a predetermined hydraulic diffusivity value obtained from Gaussian Decline Curve Analysis (DCA). To validate the GPT results, production data from two case study wells in the Wolfcamp Shale Formation, located in the Midland Basin of West Texas, are utilized alongside the traditional Rate-Transient Analysis (RTA) method. Moreover, the GPT method offers the capability to probabilistically estimate hydraulic fracture half-lengths, presenting two innovative approaches to evaluate the robustness of this newly developed method for both deterministic and probabilistic estimations. The simulation results demonstrate a close correlation between the Gaussian method and micro-seismic fracture half-lengths, with separate confirmation from the classic RTA-method. Through the case studies presented in this paper, the GPT-method showcases its utility in estimating hydraulic fracture half-lengths for two Wolfcamp case study wells, effectively demonstrating the validity and practical applicability of this novel method.

Publisher

Springer Science and Business Media LLC

Subject

General Energy,Geotechnical Engineering and Engineering Geology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3