A Review of the Hydraulic Fracturing in Ductile Reservoirs: Theory, Simulation, and Experiment

Author:

Zhu DaweiORCID,Han GuofengORCID,Zou Honglan,Cui Mingyue,Liang Chong,Yao Fei

Abstract

The bottom-hole pressure of hydraulic fracturing in ductile reservoirs is much higher than that of the hydraulic fracturing simulation, and the fracture toughness inferred from the field data is 1–3 orders of magnitude higher than that measured in the laboratory. The rock apparent fracture toughness increases with the increase in the confining pressure. Excluding the influence of the fluid viscosity and the fluid lag on the apparent fracture toughness, the fracture process zone (FPZ) at the fracture tip can explain the orders of magnitude of difference in the apparent fracture toughness between the laboratory and the field. The fracture tip is passivated by plastic deformation, forming a wide and short hydraulic fracture. However, the size of the FPZ obtained in the laboratory is in the order of centimeters to decimeters, while an FPZ of 10 m magnitude is speculated in the field. The FPZ size is affected by the rock property, grain size, pore fluid, temperature, loading rate, and loading configuration. It is found that the FPZ has a size effect that tends to disappear when the rock specimen size reaches the scale of meters. However, this cannot fully explain the experience of hydraulic fracturing practice. The hydraulic fracturing behavior is also affected by the relation between the fracture toughness and the fracture length. The fracture behavior of type II and mixed type for the ductile rock is poorly understood. At present, the apparent fracture toughness model and the cohesive zone model (CZM) are the most suitable criteria for the fracture propagation in ductile reservoirs, but they cannot fully characterize the influence of the rock plastic deformation on the hydraulic fracturing. The elastic-plastic constitutive model needs to be used to characterize the stress–strain behavior in the hydraulic fracturing simulation, and the fracture propagation criteria suitable for ductile reservoirs also need to be developed.

Funder

Beijing Natural Science Foundation

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3