Deep Learning-Based and Kernel-Based Proxy Models for Nonlinearly Constrained Life-Cycle Production Optimization

Author:

Atadeger Aykut1,Onur Mustafa2,Sheth Soham3,Banerjee Raj3

Affiliation:

1. University of Tulsa and SLB

2. University of Tulsa

3. SLB

Abstract

Abstract In this study, we investigate the use of deep learning-based and kernel-based proxy models in nonlinearly constrained production optimization and compare their performances with directly using the high-fidelity simulators (HFS) for such optimization in terms of computational cost and optimal results obtained. One of the proxy models is embed to control and observe (E2CO), a deep learning-based model, and the other model is a kernel-based proxy, least-squares support-vector regression (LS-SVR). Both proxies have the capability of predicting well outputs. The sequential quadratic programming (SQP) method is used to perform nonlinearly constrained production optimization. The objective function considered here is the net present value (NPV), and the nonlinear state constraints are field liquid production rate (FLPR) and field water production rate (FWPR). NPV, FLPR, and FWPR are constructed by using two different types of proxy models. The gradient of the objective function as well as the Jacobian matrix of constraints are computed analytically for the LS-SVR, whereas the method of stochastic simplex approximated gradient (StoSAG) is used for optimization with E2CO and HFS. The reservoir model considered in this study is a two-phase, three-dimensional reservoir with heterogeneous permeability which is taken from the SPE10 benchmark case. Well controls are optimized to maximize the NPV in an oil-water waterflooding scenario. It is observed that all proxy models can find optimal NPV results like optimal NPV obtained by HFS with much less computational effort. Among proxy models, LS-SVR is found to be less computationally demanding in the training process. Overall, both proxy models are orders of magnitude faster than numerical models in the prediction. We provide new insights into the accuracy and prediction performances of these machine learning-based proxy models for 3D oil-water systems as well as their efficiency in nonlinearly constrained production optimization for waterflooding applications.

Publisher

SPE

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3